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Abstract
Potentially, lipid membranes possess a high tangential conductivity and
permittivity due to their surface charges and the in-plane orientation of the
headgroup dipoles. Electrically, membranes exhibit a sandwich structure with
a largely isotropic centre formed by the fatty acid chains and confined by two
anisotropic headgroup layers. Accordingly, we described spherical vesicles by
an aqueous core covered by three shells. For a theoretical comparison, models
with an anisotropic single shell and anisotropic homogeneous spheres were
also considered. Two effects can be clearly demonstrated. (1) High tangential
conductivities or permittivities may lead to cyclic variations in the phase of
the electric potential in the radial direction, resulting in a hemi-shell structure
of the electric potential inside the objects with oppositely charged facets. The
thickness of the anisotropic shell restricts the number of phase oscillations.
(2) Despite the strong local field inhomogeneities, an isotropic homogeneous
Maxwellian equivalent body with an identical external field distribution exists
for any of the anisotropic models. Its properties can be found from a comparison
of the numerically calculated surface potential and the classical expression of the
Clausius–Mossotti factor at any given frequency. The permittivity conductivity
pairs obtained exhibit a sigmoidal-like frequency dependence.

1. Introduction

Anisotropies denote orientation-dependent properties of matter. They are important for many
physical and biological systems. While in biology electric anisotropies are well studied at the
tissue level, comparatively little is known about anisotropies at the cellular and subcellular
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levels. Nevertheless, electric anisotropies are observed in the cytoplasm, cytoskeleton, cell
membranes, plant-cell walls, etc. The degree of anisotropy is determined by the physico-
chemical structure and the arrangement of the constitutive molecules, e.g. microtubules, actin
and myosin, structural polymers such as cellulose, membrane proteins or lipids.

The active electric properties of biological membranes are strongly anisotropic.
Membrane-spanning protein channels transport ions in the normal direction, negligibly
contributing to the tangential membrane conductance. The anisotropies in the passive electric
properties of pure lipid membranes, i.e. conductivity and dielectric permittivity, are less
apparent, and as a result often neglected. They arise from the structural peculiarities of the
lipid molecules. The in-plane orientation of the polar lipid headgroups and their relatively free
rotation contributes to the high tangential dielectric permittivity, which can exceed the normal
component by a factor of ten [1–3]. Membrane surface charges lead to the adsorption and
consecutive in-plane diffusion of ions, at several orders of magnitude higher than the rate of
ion translocation through the non-polar membrane core. As a result, the tangential conductance
is greatly increased [4].

These electric properties and the cell geometries determine their polarization by external
electric fields. Cellular polarization gives rise to several AC-electrokinetic phenomena, like
dielectrophoresis (DP), electro-rotation (ER), electro-deformation, etc [5–9]. For a theoretical
description, dielectric cell models are employed. The common single-shell model (1SM)
describes biological cells as spherical or ellipsoidal objects that consist of confocal layers like
membrane and aqueous bulk media [10–12]. However, these models are highly simplified,
since they neglect the structural complexity of the cellular media, assuming that the cytoplasm
and membrane are isotropic and homogeneous.

As early as 1952, a field solution for homogeneous spheroidal objects (homogeneous
model, HM) with anisotropic dielectric properties was found in crystal physics [13]. More
recently, the solution has been extended to account for the electronic polarization of
spherical [14] and ellipsoidal objects with an anisotropic coating [15, 16]. The same model
has been used to describe the dielectric polarization of the 1SM [4]. The model successfully
described the AC-electrokinetic behaviour of cells with anisotropic membrane properties,
which were artificially induced by lipophilic ions [4, 17]. However, anisotropic dielectric cell
models have so far considered mainly the surface polarization of the objects.

In this study, we have examined the mechanisms and patterns of the potential and
polarization distributions within objects with anisotropic membrane properties. The original
motivation of our study stemmed from the current discussions on the subcellular absorption
of microwave field energy, as well as the expanding biotechnological applications of methods
like electrofusion, trapping, and cell electroporation [18, 19]. We compared the solutions of
the analytical Laplace equation with those of a numerical finite element method (FEM) for
spherical object geometries. These considerations proved the correctness of Maxwell’s notion
of homogeneous equivalent bodies for anisotropic homogeneous models as well as for 1SMs
with anisotropic media properties.

Naturally, the influence of the membrane dielectric properties on object polarization
is enhanced for an increased ratio of membrane thickness to object radius. As a result,
appropriate objects for the experimental verification of the effects of membrane anisotropy
will probably be phospholipid vesicles with a size balanced between a high resolution of
the dielectric membrane properties and the optical visibility of the object. We suggest
dielectric single-object spectroscopy methods for the experimental verification of our theory,
due to their higher resolution in object parameters. AC-electrokinetic methods can be
expanded to small objects by light scattering [20] or by trapping fluorescence-labelled
liposomes [21, 22].
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2. Theory

2.1. Laplace equation

For biological objects with a magnetic permittivity close to unity and dimensions small
compared to the electromagnetic wavelengths of interest, the electro-quasistatic (EQS)
approximation can be applied [23]. For objects in aqueous solution with diameters of
approximately 100 nm, this approximation will hold up to THz frequencies.

In EQS, the potential distribution � induced by time harmonic fields is given by the
Laplace equation:

∇ · [(σ + jωεε0)∇�] = 0. (1)

It depends on both the free and the displacement charges in the medium, expressed by its
conductivity (σ ) and dielectric permittivity (ε), respectively.

In general, σ and ε are second order dielectric tensors [14, 16, 23]. In most cellular
membranes, σ and ε vary only in the normal (norm) and tangential (tang) directions with
respect to the membrane surface [14, 16]. When the principal axes of the tensor coincide with
the coordinate axes, the σ and ε tensors become diagonal. Diagonal tensors are obtained
in spherical coordinates for spherically symmetric objects, where the norm and the tang
components coincide with the radius vector and the angular coordinates, respectively. We
will refer to this anisotropy as ‘rotationally symmetric’.

2.2. Solution techniques

In the following, we present analytical and FEM solutions of the Laplace equation (equation (1))
for spherical objects with rotationally symmetric properties. The analytical solution was
obtained in spherical coordinates. This is the classical solution for spherical objects,
expressed in terms of spherical harmonics [24–26]. The potential within spherically symmetric
anisotropic objects is radially modified by an effective number δ. For the 1SM with
dielectrically anisotropic membrane, the solution is as follows [4, 14, 17]:

�ext = (−E0r + A/r2) cos(θ)

�mem = (−Br δ + C/r δ+1) cos(θ)

�int = −Dr cos(θ).

(2)

The subscripts ext, mem and int stand for the exterior, membrane and interior, respectively.
The anisotropy factor δ is complex and depends on the ratio of the normal and tangential
components of the complex dielectric conductivity:

δ = −1

2
+

[
1

4
+

2σ ∗
tang

σ ∗
norm

]1/2

. (3)

The form of the coefficients A, B, C and D is found from the boundary conditions at the
interface (r = a) of two media i and i + 1:
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(4)

where r stands for the radius vector.
As an alternative approach we used the FEM method. It involves discretization of the

Laplace equation into a problem with a finite number of unknown parameters. The starting
point for FEM is a mesh that is a partition of the geometry into small units of simple shape.
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The numerical solution is preferably applied for models of complex geometry and media
properties. It provides a simultaneous solution for the frequency and the spatial dependences
of the electrical quantities. In this work, we have used the FEM method for verification of the
analytical solution as well as for a graphical representation of the potential distribution within
the anisotropic models. The FEM solution was obtained in cylindrical coordinates, using the
software FEMLAB©3.0.2 The model objects were placed in the centre of a cylinder filled
with external medium. To ensure a homogeneous external field, the radius and the height
of the cylinder were five times larger than the vesicle radius. Its bases were equipotential
planes, generating an electric field of 2.5 ×103 V m−1 along the cylinder axis. Using the axis-
symmetry of the model geometry, the two-dimensional formulation of the Laplace equation
(equation (1)) could be solved instead. Further, we assumed that the cylindrical axes coincide
with the principal axes of the diagonal dielectric tensor (see section 2.1). Accordingly, the
dielectric tensor for the numerical models along any axis was obtained by a multiplication of
the diagonal tensor with the proper rotation tensor.

2.3. The Clausius–Mossotti factor (CMF)

Electric fields polarize biological cells. The effective cellular polarization (Peff ) is the volume
integral of the local polarizations divided by the cell volume (V ). It corresponds to the induced
dipole charges at the surface of the object, i.e. the surface polarization, which generate the
driving force in all AC-electrokinetic effects. The frequency dependence of Peff is expressed
by the Clausius–Mossotti factor (CMF∗) as follows:

�Peff = εeε0CMF∗ �E, (5)

where εeε0 is the permittivity of the external medium and �E is the external field vector. CMF∗
is directly related to the frequency dependence of the AC-electrokinetic effects [9, 18, 19]. For
example, the real and imaginary parts of the CMF∗ are related to the frequency dependences
of the DP and the ER spectra, respectively [7, 9, 27, 28]. The CMF∗ provides a convenient
link between theoretical analyses and experimental measurements and can be used to compare
different dielectric models.

The complex CMF∗ is determined by the dielectric medium properties, the geometry of
the object and the frequency of the external field [5, 7, 18, 29, 27, 24]. For spherical objects it
is given by

CMF∗ = 3
ε∗

eff − ε∗
e

2ε∗
e + ε∗

eff

, (6)

where ε∗
eff is the effective permittivity of the object. In confocally shelled objects, the effective

permittivity ε∗
eff is a structure-dependent mixture of the permittivities of the shells and the

interior of the object [18]. The concept of effective permittivity coincides with the notion of
Maxwell for an equivalent body [30, 31]. The equivalent body is homogeneous and exists
for all isotropic spherical objects with confocal geometries. For any given frequency, it has
the same external geometry and polarization as the inhomogeneous object. Equivalent bodies
will have isotropic properties and a homogeneous volume polarization, with an orientation
parallel to the applied external field. This corresponds to a homogeneous local field that can
be calculated from the quotient of the potential at the pole and the axis length.

Accordingly, an alternative expression for the CMF∗ is given in terms of potentials as
follows [31]:

CMF∗ = 3

(
�∗

e − �∗
c

�∗
e

)
, (7)

2 Femlab 3.0. FEMLAB GmbH, Berliner Strasse 4, D-37073 Göttingen, Germany. Email: info@femlab.de
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Table 1. Model dielectric properties.

Single-shell model (1SM) Homogeneous model (HM)
Dielectric
properties Membrane Interior Exterior Interior Exterior

σnorm 7 × 10−7 7 × 10−7

Conductivity 0.1 0.1 0.1
σtang 7; 0.7; 0.07 7; 0.7; 0.07

εnorm 3.7 3.7
Permittivity 78 78 78

εtang 3700; 370; 37 3700; 370; 37

where �∗
c is the (complex) potential at a point on the surface of the object, e.g. its pole, and

�∗
e is the (real) potential at the same point in the absence of the object. The rotationally

symmetric anisotropy does not influence the dependence of the potential on the angular
component (θ ) (see equation (2)). Therefore, equation (7) defines the same CMF∗ for any
point at the outermost confocal surface of an object. (Since no potential is induced at points in
the equatorial plane these are an exception. Please also note that the situation is more complex
when the principal axes of the anisotropy are not in parallel to the field, e.g. for objects with
Cartesian anisotropy.) This corresponds to a constant polarization, i.e. a constant local field,
within a homogeneous, isotropic, equivalent body. To obtain the effective permittivity and
conductivity of the equivalent body, the properties of the external medium as well as the real
and the imaginary parts of the CMF∗ obtained by potential ‘measurements’ from equation (7)
were employed in equation (6), respectively.

3. Models

Spherical models with rotationally symmetric properties are relevant to spherical biological
cells, vesicles and some viruses. As a standard object geometry we assumed a sphere with
an external radius of 75 nm. It was assumed to be suspended in an aqueous solution with a
permittivity of 78 and a conductivity of 0.1 S m−1.

A vesicle with a spherical core was assumed for the 1SM, surrounded by a 5.5 nm thick
lipid membrane. For simplicity, the same dielectric properties were assumed for the core
and the external medium. The isotropic membrane was characterized by a conductivity
of 7 × 10−7 S m−1 and a permittivity of 3.7. In the anisotropic 1SMs, the membrane
was anisotropic either in permittivity or conductivity. We considered various values for
the tangential electric components. The reason is the membrane structure, giving rise to
high tangential permittivities [1–3] and conductivities [4]. In the calculations, the normal
components were left constant and equal to the isotropic parameters (table 1). For simplicity,
all models were assumed to have frequency-independent permittivities and conductivities.
In practice, it will be unrealistic to assume values as high as 3700 over a frequency band
of nine decades. Dispersion processes will lead to a reduction of the high initial values
and consequently roughly to a transition from the high to the low values given in table 1.
Nevertheless, data on the dispersion frequencies are sparse [3].

To distinguish the dielectric from the geometric membrane effects, the 1SM was compared
with a structurally homogeneous dielectric sphere (homogeneous model, HM) with internal
properties equal to those of the anisotropic membrane (table 1).

The localization of the anisotropic properties in the lipid headgroup regions was taken into
account by a three-shell model (3SM). Its membrane consisted of a central isotropic membrane
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Figure 1. Comparison of the analytical solutions (lines) with the FEM solutions (triangles) for the
anisotropic models. Real (�(CMF∗)) and imaginary (�(CMF∗)) parts of CMF∗ for an isotropic
HM (· · · · · ·) and for 1SMs with homogeneous isotropic (——) and anisotropic membranes. In the
anisotropic models, either the conductivity, σnorm = 7×10−7 S m−1 and σtang = 7 S m−1 (- - - -),
or the permittivity, εnorm = 3.7 and εtang = 3700 (— · —), is anisotropic.

layer of 3.5 nm thickness and a permittivity and conductivity of 3.7 and 7 × 10−7 S m−1,
respectively. The central layer was confined by two 1 nm layers of equal but anisotropic
dielectric properties.

4. Results

Figure 1 compares the CMF∗ spectra of isotropic and anisotropic models. The �(CMF∗) of the
isotropic HM exhibits two plateaus, determined by the ratios of the media conductivities and
permittivities, respectively. A similar frequency behaviour is observed for the isotropic 1SM.
Due to the equality of the external and internal media conductivities, the plateau, typically
observed at intermediate frequencies for 1SM, vanishes. The higher effective permittivity
of the 1SM determines a higher magnitude of the permittivity plateau. The real and the
imaginary parts of the CMF∗ are related by the Kramers–Kronig relation [7]. Plateau transitions
correspond to peaks in the �(CMF∗) frequency spectrum. Their magnitudes are determined
by the strength of the dispersions.

Obviously, anisotropic membrane properties dramatically change the CMF∗ spectra of
the 1SM. This result has been confirmed by both the analytical and the numerical solutions
(figure 1). A high tangential membrane conductivity leads to the appearance of an intermediate
plateau and a corresponding peak in the �(CMF∗) and �(CMF∗) spectra, respectively. In
contrast, assigning an anisotropic permittivity to the membrane leads only to quantitative
changes of the spectra.

To get a better notion on the polarization mechanisms of anisotropic objects we varied the
degree of anisotropy (table 1). Effects of a high tangential conductivity appeared at low and
medium frequencies, whereas those of the high tangential permittivity were manifested in the
highest frequency range (figure 2). Increasing the tangential conductivity of the membrane
increases the magnitude and the width of the intermediate plateau in the real part of CMF∗.
An increased tangential permittivity leads to higher magnitudes of the permittivity plateaus.
For both anisotropies, at high magnitudes of the tangential dielectric component, the CMF∗ of
the anisotropic 1SM and the corresponding HM are very similar (figures 2(a) and (c)) if not
identical (figures 2(b) and (d)).

The actual anisotropic structure of biological membranes has been considered by the
3SM, where the anisotropy is restricted to both membrane surfaces. We checked that under
our conditions the outermost anisotropic shell dominates the electric behaviour of the object,



Lipid membranes hide their dielectric anisotropy 7823

Figure 2. �(CMF∗) and �(CMF∗) for 1SMs (- - - -) and HM (——) with anisotropic membrane
conductivities ((a), (c), σtang = 7 (circle), 7 × 10−1 (triangle) or 7 × 10−2 S m−1 (square)) and
permittivities ((b), (d), εtang = 3700 (circle), 370 (triangle) or 37 (square)).

Figure 3. �(CMF∗) and �(CMF∗) of the isotropic 1SM (· · · · · ·) and anisotropic 1SM and 3SMs
with either conductivity-, σtang = 7 S m−1 (- - - -), or permittivity-based, εtang = 3700 (——),
anisotropy. The anisotropic surface layers of the 3SMs are either 1 nm (circle) or 0.5 nm (triangle)
thick.

i.e. the behaviour of the 3SM is equivalent to that of a 2SM, when assuming the properties of the
central membrane layer also for the internal anisotropic layer. As expected, the reduction in the
volume of the anisotropic membrane fraction results in a reduction of the anisotropy effects.
This applies to models, no matter whether their anisotropy is conductivity or permittivity
based, as expressed in the levels of the medium and high frequency plateaus of their �(CMF),
respectively (figure 3(a)). For example, an anisotropic permittivity for a volume fraction of
around 8% (0.5 nm anisotropic layer) in the outermost headgroup region results in an increase
of the plateau level to more than 50% of the level for a completely anisotropic membrane.

The polarization patterns of the anisotropic models are determined by the potential
distribution within the anisotropic media (figure 4). Surprisingly, the potential in the anisotropic
HM does not decrease linearly towards the centre of the object but undergoes consecutive phase
alterations of more than 180◦. Accordingly, oppositely charged regions occur in a snapshot
(figures 4(a) and (c)). Their width depends on the external frequency. The induced potentials
have the highest magnitude along the radius line to the pole of the HM. They decline with
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Figure 4. Distribution of the real part of the potential within the HM and the 1SM for
σnorm = 7 × 10−7 S m−1 and σtang = 7 S m−1 at 10 MHz ((a) and (b)) and 1 GHz ((c) and (d)),
respectively. The external field is vertically oriented between the bottom (0 V) and the top (positive
V) horizontal axes. The white lines are positive isopotential lines, the black are negative and the
dashed lines are at 0 V. Please note that the distances between the isopotential lines are not to scale
(compare to figure 5).

decreasing r and θ , i.e. towards the centre and the equatorial plane of the object, respectively.
The oppositely charged areas are separated by zero-potential lines. An analogous potential
distribution is observed in the anisotropic shells of the 1SM (figures 4(b) and (d)). This is
also expected for the 3SM. However, the small thickness of the anisotropic layer restricts the
number of cyclic phase oscillations. At 10 MHz, the membrane potential in the 1SM undergoes
a single 180◦ phase shift and at the internal membrane surface it exhibits a negative amplitude.
The continuity of the potential at the boundaries results in a core, oppositely charged with
respect to the external potential. In contrast, at 1 GHz, the potential within the membrane does
not exhibit any phase shift and the interior of the object is charged in phase with the external
potential.

The frequency and the radial dependences of the induced potentials within the surface
regions of the anisotropic 1SM and HM are depicted in figure 5. At low frequencies (1 kHz), the
high tangential membrane conductivity causes the potential to decrease rapidly with decreasing
distance, r . Therefore, even if the shift in the potential phase is considerable, the potential
magnitude appears negligibly small (figure 5(a)). At higher frequencies the potential decreases
over large distances. The first region, underneath the surface of the object with more than 180◦
potential shift, is clearly distinguishable and has a magnitude around ten times smaller than the
potential at the surface. Note that the strong screening effect of the high tangential conductivity
results in similar potential distributions within the HM and 1SM at 1 kHz and 1 MHz. Potential
phase shifts can also be generated by high tangential permittivities. However, they appear at
lower frequencies and have smaller magnitudes (figure 5(b)).
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Figure 5. Real part of the potential along the polar radii of the 1SM (- - - -) and the HM (——)
with anisotropic conductivity, σnorm = 7 × 10−7 S m−1 and σtang = 7 S m−1 (a), and anisotropic
permittivity, εnorm = 3.7 and εtang = 3700 (b) at 1 kHz (circle), 1 MHz (triangle) and 1 GHz
(square).

Despite the strong inhomogeneity of the potential distribution within their anisotropic
media (figure 4), the HM, 1SM and 3SM exhibit a homogeneous surface polarization. Figure 6
shows the equivalent bodies of two anisotropic HMs. At 1 GHz, the polarization of the HM
with a tangential conductivity of 7 S m−1 (figure 6(a)) is equivalent to the polarization of
an isotropic HM with a conductivity and permittivity of 1.18 S m−1 and 20.086 (figure 6(b)),
respectively. Analogously, at the same frequency a tangential permittivity of 3700 (figure 6(c))
in the same model geometry corresponds to an isotropic HM conductivity of 1.5×10−5 S m−1

and a permittivity of 163.63 (figure 6(d)). The equipotential planes within the equivalent
bodies are always plane-parallel (homogeneous field).

The frequency dependences of the isotropic permittivities and conductivities of the
equivalent bodies for all anisotropic model geometries have been found using the procedure
described in section 2.3 (figure 7). Models with smaller degree of anisotropy have been
used to allow for a better differentiation of the spectra (compare to figure 2). In all cases,
the real parts of the equivalent conductivities and permittivities exhibit single sigmoidal-like
transitions with increasing frequency. The equivalent permittivities and conductivities for
the conductively anisotropic HM, 1SM and 3SM differ by less than one order of magnitude
(figure 7(a)). However, the properties of the equivalent bodies for the models with anisotropic
permittivities, exhibited significant magnitude differences as well as different frequency
dependences (figure 7(b)).

5. Discussion

5.1. Oscillating potentials

5.1.1. Potential in anisotropic HM. The appearance of cyclic oscillations of the potential
phase within anisotropic media (figure 4) results from the Laplace equation. The potential in
the anisotropic HM is

�int = Ar δ cos(θ), (8)
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Figure 6. Distribution of the real part of the potential at 1 GHz within HMs with anisotropic
conductivity ((a), σnorm = 7 × 10−7 S m−1, σtang = 7 S m−1) or permittivity ((c), εnorm = 3.7 and
εtang = 3700) and their equivalent bodies ((b) and (d)). For details see figure 4. Please note the
identity of the external potential distribution of the anisotropic objects and their equivalent bodies.

Figure 7. Frequency dependence of the equivalent conductivities (right scale) and permittivities
(left scale) of the HM (——), 1SM (— · —) and 3SM (- - - -) with either anisotropic conductivity,
σtang = 7 × 10−1 S m−1 (a), or anisotropic permittivity (b), εtang = 370.

where δ was defined in equation (3). For r > 0, equation (8) can be transformed into

�int = ar�(δ) cos(θ){sin[α + |�(δ)| ln(r)] + j cos[α + |�(δ)| ln(r)]}, (9)

where (ar�(δ) cos(θ)) and (α + |�(δ)| ln(r)) are the amplitude and the phase of the potential;
a and α are frequency-dependent variables, whose values are related to �(δ) and �(δ),
respectively. For a decreasing distance r , i.e. moving from the surface to the centre of the
object, the amplitude of the potential decreases with r�(δ) whereas the spatial density of phase
oscillations increases. The spatial variations are further modified by the dielectric properties
of the anisotropic media, represented by the anisotropy factor δ.
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Figure 8. Frequency dependence of the real (sigmoidal) and the imaginary (peak) parts of the
dielectric factor δ(ω) for varying tangential conductivities (a), σtang = 7 (——), 7 × 10−1 (- - - -)
and 7 × 10−2 (— · —) S m−1, and permittivities (b), εtang = 3700 (——), 370 (- - - -) and 37
(— · —).

Interestingly, the frequency-dependent function �(δ) undergoes a single sigmoidal
transition that corresponds to a peak in the �(δ)-function (figure 8). Each �−� pair of
these functions is very similar in shape to Lorentzian spectra. The frequency dependence
of δ(ω) appears independent of the tangential parameters. Nevertheless, its magnitude
is higher for higher tangential conductivities or permittivities (figure 8). By contrast, an
increase in the normal conductivity and permittivity increases and decreases the characteristic
frequency of δ(ω) dispersion, respectively. The dispersion magnitude remains unaffected
(curves not shown). In summary, it is important how the degree of anisotropy is changed.
However, biological membranes will exhibit more pronounced alterations in the permittivity
and conductivity in the tangential than in the normal direction.

The decrease in the magnitude of the potential inside the object moving towards its centre
is steeper for high �(δ) values (equation (8)). The maximum attenuation of potential in the
surface region of the HM occurs at opposite ends of the frequency window, in accordance with
the inverse frequency dependences of the �(δ) for the conductivity and permittivity based
anisotropies (figure 8). Accordingly, the potential oscillations in the volume of the HMs
with high tangential conductivity are less screened at higher frequencies, whereas they can be
better revealed at low frequencies in the model with high tangential permittivity (figure 5). In
both cases however, the density of the potential oscillations, given by the absolute magnitude
of �(δ), is already decreased. For the anisotropic conductivities and permittivities used in
our dielectric models (table 1), the maximum densities, i.e. the peaks of �(δ), occurred at
around 6 and 2 kHz, respectively. We compared these frequencies to the limiting Maxwell–
Wagner frequencies that can be obtained from each of the permittivity–conductivity pairs in
the anisotropic model. In any case, the �(δ) maxima were below the lowest Maxwell–Wagner
frequency.

5.1.2. Potential in the anisotropic 1SM. The potential distribution in the anisotropic shell of
the 1SM arises from the contributions of the external field and the dipole field of the polarized
core. In the radial direction, both terms are modified by the same factor δ (see equation (3)).
Under the condition of positive r , the potential in the anisotropic shell can be represented in
analogy to equation (9) as

�shell = ar�(δ) cos(θ){sin[α + |�(δ)| ln(r)] + j cos[α + |�(δ)| ln(r)]

+ · · · + br1−�(δ) cos(θ){sin[β + |�(δ)| ln(r)] + j cos[β + |�(δ)| ln(r)]}. (10)
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Figure 9. (a) 1SM with membrane of enhanced tangential conductivity (shaded area). The pole
of the cell is towards the top of the figure. The external side of the membrane is charged by the
external potential via the resistivity of the external medium, whereas the inner side is grounded
(0 V) to the equatorial plane by the core resistivity. (b) RC phase shifter, producing a phase shift of
more than 270◦ . The phase-shift (angle, α) of the potential, created by one (— · —), two (- - - -),
three (– – –) or four (——) RC pairs, is presented in a polar plot (c).

For corresponding anisotropies, the variables a and α in the external-field term take the same
values in the HM and in the shell of the 1SM. However, the dipole field term increases as
one gets closer to the vesicle core, as well as for certain frequencies in the models with high
tangential conductivity or permittivity. This leads to a deviation of the potential distribution
within the anisotropic 1SM from the corresponding HM (figure 5).

The potential in the anisotropic layers of the 3SM can also be expressed by equation (10).
Since the anisotropic layers are significantly thinner than the membrane in the 1SM, the
influence of the core polarization is very strong. Potential phase oscillations with a radial
period larger than the thickness of the anisotropic layers cannot be observed.

5.1.3. Mechanisms. The occurrence of spatially alternating potentials within the anisotropic
media can be explained qualitatively by the RC (resistor–capacitor) scheme in figure 9(a). The
scheme considers the effects of an enhanced tangential conductivity.

For example, the peak of the negative phase of the external AC potential (or field) should
be considered. The charge will be highest at the pole. (Please note that the actual peak value
at the membrane surface may shift slightly in phase.) The centre plates of the top membrane-
spanning capacitor pairs will be negatively charged. From here, negative charges are conducted
to the centre plates of the other membrane-spanning capacitor pairs through the cascade of
the tangentially oriented resistors. In this model, charges are also injected through the other
external resistors, nonetheless with reduced contributions towards the model’s equator. Finally,
the centre plates of the capacitors form negative depots of charges, with charge numbers
decreasing from the pole along the arc of the membrane (figure 4). For symmetry reasons,
the voltage must be zero at the equatorial plane. With the rising positive flank of the external
AC potential, positive charges are deposited in the membrane, first neutralizing the negatively
charged depots. The RC relaxation time inside the membrane introduces a phase shift of the
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inner membrane potential. The magnitude of the out-of-phase component of the potential is
at a maximum when the external field frequency and the RC relaxation time match. As in
the 1SM, oppositely charged areas cannot be observed at DC and at very high frequencies
(figure 8(a)).

Qualitatively, the RC scheme in figure 9(a) functions analogously to the RC phase shifter
in figure 9(b) that is widely used in electronic circuitry. In principle, a single RC pair may
induce a maximum phase shift of 90◦ (though at zero amplitude). Accordingly, two cascaded
RC pairs may induce up to 180◦ and so on. This means that a minimum of three RC pairs
are required to create a charge depot with a phase shift of more than 180◦, i.e. having a sign
opposite to that of the externally applied potential. Figure 4 shows an ‘effective number of
RC pairs’ higher than three for anisotropic membrane models.

One has to consider a multitude of RC phase shifters to model the occurrence of more than
one cyclic phase oscillation within the anisotropic medium. For example, ‘concentric layers’
of RC phase shifters must be assumed in the volume of anisotropic HMs. Most of the charges
will be deposited below the model’s surface, leading to the highest potential amplitude in the
first ‘layer’.

Analogously, the occurrence of a potential phase shift can be explained in models with
enhanced tangential permittivity. However, whereas the above RC phase shifters represent low-
pass filters, the exchange of the resistors for capacitors and vice versa inside the membrane
leads to a high-pass characteristic in these models (compare to figure 8). We found a lower
number of cyclic phase oscillations for our models with anisotropic permittivity (figure 8(b)).

5.2. Equivalent body

The notion of equivalent bodies was originally developed by Maxwell [30] for spherically
symmetric, homogeneous or confocally shelled objects with isotropic dielectric properties.
In dielectric media with radially symmetric anisotropy only the radial and not the angular
components of the local field are modified. As a result, the volume polarization of anisotropic
objects appears inhomogeneous (figure 4) even though their surface exhibits a polarization
pattern corresponding to homogeneous isotropic objects (figure 6). For this reason, Maxwell’s
notion can be extended to objects made of anisotropic media. This also applies to anisotropic
1SMs and 3SMs, which can be described by equivalent isotropic HMs. The similarity of the
CMF∗ spectra of the anisotropic HM, 1SM and 3SM at high magnitudes of the tangential
dielectric components (figures 2 and 3) suggests similar properties of their equivalent bodies.
For small anisotropies, the polarization of the models is very similar to that of isotropic objects
(figure 1).

We have further tried to extend Maxwell’s notion to an isotropic ‘equivalent membrane’.
Assuming the same core properties and following the procedure in section 2.3, we tried to
find the permittivity and conductivity for the isotropic shell of the ‘equivalent 1SM’ for every
frequency. However, such an ‘equivalent membrane’ could not be found for every frequency.
Most probably this is due to the influence of the anisotropic shell on the polarization of the
core. A phase shift of the local field of more than 90◦ with respect to the external field can only
be observed in 1SMs with anisotropic membrane (figure 4(b)). Therefore, the assumption of
the same core properties for a model with an anisotropic shell and an ‘equivalent 1SM’ with
an isotropic shell seems to be inconsistent.

6. Conclusions

We could show that the surface polarization of radially symmetric anisotropic objects is
equivalent to the polarization of homogeneous isotropic objects, i.e. Maxwellian equivalent
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bodies exist. The frequency dependence of the conductivity and permittivity of the equivalent
bodies exhibit ‘relaxations’ with a single time constant. This equivalence may result in
erroneous interpretations of impedance or AC-electrokinetic data of biological objects.

Since dielectric particle or cell characterization and manipulation methods are based on
surface polarization (which is equivalent to the induced dipole moment, compare equations (6)
and (7)), the anomalous potential distribution within the volume of the objects remains
completely hidden. This may explain why anisotropy effects have rarely been detected.
Nevertheless, the frequency dependence of the object properties that are introduced by possible
anisotropies will influence the electro-manipulation and handling properties of particles in
biotechnological applications.

Even though dispersion processes in anisotropic (biological or colloidal) objects are based
on the structure of the objects, they possess properties that are qualitatively different from
common structural dispersions. Firstly, in practice, the anisotropic properties are introduced
by the molecular structure of the objects and therefore strongly related to molecular properties,
and secondly, they generate an electrical ‘fine structure’ inside homogeneous media as can be
seen in HMs.

Furthermore, dielectric anisotropies may lead to a strong inhomogeneity of the potential
and field distributions in homogeneous media, especially in the surface regions of spherical
HMs and 1SMs. High local fields in these regions may induce large currents leading to a
localized field absorption and consequent energy dissipation.
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